Porting code to OSG

Derek Weitzel



Structure

 Combining a few sections.

* Will first talk about high level porting, then
give an example.

e After my short talk, will be experts time. OSG
‘experts’ will walk around and help users get
running and answer questions.



Checklist for jobs

Executable portable(ness)?
Job Length
Workflow Structure

Data



Executable Portable(ness)

 Hardcoded paths will not be portable.
 Compile time file paths are also not portable.

* Required libraries. Static compiled
applications are best, but can bring some
libraries.



Subtle Executable Portable(ness)

* File path length limits.

 Compiled with processor extensions (Intel vs
AMD)

* Process forking — Scheduler can lose track of
jobs.



Job Length

* Target job length is 1-3 hours.

* Bundle smaller jobs into a larger jobs. Usually
easy.

* Division of larger jobs into smaller



Workflow Structure

e Flat structure?
— Easy to work with.




Workflow Structure

* Hierarchal? (DAG)

— Can create complex workflows that automate
retries and job execution.




Data

o Pull

— Worker node pulls in data at beginning of execution

— Late binding attributes that fits well with Pilot based
workflows (Don’t know where job will end up)

* Push
— Push the jobs to the data
— Accomplished with pre-staging



Data - Pull

e Common way is through HTTP Squid Caching

— Documented on twiki
https://twiki.grid.iu.edu/bin/view/
Documentation/OsgHttpBasics

e SRM Transfers

— SRM copy for larger files. SRM accesses larger
storage elements that have high bandwidth and
high capacity.



Data - Push

e Push to sites

— Push to a local storage element ‘near’ the
compute element

— Usually done by automated infrastructure.

— Limits you to running where your data is, even
though those sites may be full



Data - Applications

 Does my application need access to all of this
global data?

 |fit only needs a small portion, then only
transfer small portion.

* Don’t use the global storage space, OSG_APP
& OSG_DATA (unless you have to)



HCC's example

* Open Mass Spectrometry Search Algorithm
(OMSSA) from Nebraska Medical Center

e 22,000+ (short) Jobs per dataset, divided into
~130 jobs per real job, 172 runs per dataset

e x45 Data sets = 961200 (short) jobs



HCC's example

e 21MB for Per Dataset shared between
datasets

 83MB for Executables. Used in every job

* 172 Runs per Dataset



HCC’s Example — Data

* Decided to use Squid
— CMS and ATLAS sites required to have Squid

* Both executables (shared by all runs) and
datasets (shared by subset jobs) will be
cached.

 Made special Linux Virtual Server at HCC



HCC’s Example — Data

* Made special Linux -
Virtual Server at HCC
~Handles highload = FF e
from sites without { P,imarym,ectorj E‘”DJ |
squid. | e I
-~
o

11 requests/sec - 0.6 GB/second - 58.2 MB/ request



Possible Questions

* Data questions?
— How should | distribute Data?
— How much data can Squid handle?

* | have a rule of thumb:
— 1-10 MB: Transfer data with each job
— 10-200MB: Use squid
— 200MB - 2-3GB: Use SRM
— 3GB+: Special case. Need some clever thinking.



Possible Questions

 Workflow questions?
— Use DAG?

e Simple to understand and setup.

— Use Pegasus?
e Can handle complex (data centric) workflows

* Growing to handle pilot submissions. Not 100%
compatible with pilot systems yet.



Possible Questions

* Job questions?
— What sites should | run on?

* Can query to see sites that support your VO.

— Should | use GlideinWMS (usually yes)
* Most larger VO’s use GlideinWMS.

— What VO should | use?

* |f you are related to any existing VO’s, talk to them.

* Engage is a grab bag VO able to support many different
sciences.



